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ABSTRACT

The tensile strain rate sensitivity and the stress-rapture strength of Mo-base and W-base alloy

wires, 380 lain in diameter, were determined over the temperature range from 1200 to 1600 K.

Three molybdenum alloy wires; Mo + 1.1 wt% hafnium carbide (MoHfC), Mo + 25 wt% W +

1.1 wt% hafnium carbide (MoI-IfC+25W) and Mo + 45 wt% W + 1.1 wt% hafnium carbide

(MoHfC+45W), and a W + 0.4 wt% hafnium carbide (WHfC) tungsten alloy wire were evaluated.

The tensile strength of all wires studied was found to have a positive strain rate sensitivity.

The strain rate dependency increased with increasing temperature and is associated with grain

broadening of the initial fibrous structures. The hafnium eat'bide dispersed W-base and Mo--base

alloys have superior tensile and stress-rapture properties than those without HfC. On a density

compensated basis the MoHfC wires exhibit superior tensile and stress-rapture strengths to the

WI-IfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found

to increase the long-term stress-rupture strength at temperatures above 1400 K. Theoretical calcu-

lations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due

to the resistance to recrystallization imparted by the dispersoid.

INTRODUCTION

High temperature applications such as space power conversion have generated great interest

in fiber reinforced metallic composites. Refractory metals and alloys reinforced with refractory

metal alloy fibers have been shown to be applicable for extremely high temperature ranges [1].

The useful temperature depends upon the combination of fiber and matrix. The tungsten (W) fiber

reinforced niobium alloy composite was reported to have high tensile and creep strength in the

temperature range of 1400 to 1500 K [1]. The performance of a composite is usually dependent

upon the fiber component. The major portion of the tensile and creep strength of the composite

is associated with the properties of the fiber. The use of a strong and stiff fiber is desired for a

high strength composite material

Wires of the hafnium carbide dispersion strengthened W and W-Re alloys, ranging in diam-

eter from 200 to 380 _tm, have recently been shown to possess superior tensile and stress-mpture

strengths, compared to the potassium bubble dispersed or the thoria dispersed W wires [2,3]. The

fine hafnium carbide dispersoids were reported to be more effective than bubble or thoria disper-

soids [3,4] in preserving the heavily unidirectionally elongated fibrous grain structure of the W

alloy wires. The effectiveness of the hafnium carbide on the mechanical properties of other
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refractorymetalbasealloy wires,suchasmolybdemun(Me), is of interest.Molybdenum (Me)
with its lower densitythanW appearsto be attractivefor makinglower weight composites.

Houck [5,6] hasstudiedthe mechanical properties-of Me alloys, such as TZC (Me + 1.25%

Ti + 0.30% Zr + 0.15% C), TZM (Me + 0.5% Ti + 0.08% Zr + 0.015% C), Me + 0.5% Ti (all

percentages in this report are in weight percent) and Me + 0.5% Zr, and reported that the

recrysmllizafion tempemune for these alloys varies from 1200 to 1700 K, depending on the

alloying element. The TZC and TZM alloys possess a relatively high tensile strength, but the

alloying elements do not appear stable at the higher testing temperatures. The stress-rupture

strength of these alloys generally are much lower than the W-base alloys. The present study

focussed on the determination of the tensile and stress-rupture properties of the hafnium carbide

dispersed Me-based alloy wires and on the comparison with hafnium carbide dispersed W alloy

wires. The study also evaluated the effect of HfC dispersoids in stabilizing the fibrous micro-

structures in the wires in the temperature range of 1200 to 1600 K.

EXPERIMENTAL PROCEDURE

Materials

The chemical compositions of the hafnium carbide dispersed Me and W alloy wires examined

in this study are given in Table L MoHtt2 wires, Me with hafnium carbide, were the HfC dis-

- pcrs_ simpleMo-base alloys,and MoHfC+45W and MoHfC+25W wires were the HfC dispersed

and alloyed with 49.5% W and 30.4% W, respectively. The Me-base wires were fabricated by

powder metallurgy techniques, the W-base WH/C wires were produced by vacuum arc-melting

process.

Hafnium carbide in the Me alloys was formed from alloying of elemental I-If and C during

sintering at high temperature. This Me alloy wire (MoH/C+45W) is believed to have about 0.1%

HfC and about 0.7% HfC for WHfC. The MoHfC wires also contained a small unintended

amount (4%) of W, which can provide some solid-solution strengthening. The WHfC wires were

strengthened by the 0.4% HIC dispersoids without additional alloying elements.

All wires were heavily drawn to their final nominal diameter of about 380 gin. Figure I

shows the microstructures of the as-drawn wires in this study. The grain structures are noted as

infinitely long and of a very fine width, so-called fibrous grain structures. The grain width of the

MoHfC wires is about 0.5 I_m, and that of the WHfC wires about 0.3 ttm. The size distribution

TABLE L--CHEMICAL COMPOSITION OF Mo AND W BASE

ALLOY

Material Chemical composition, wt% (at.%)

C N O I-If W Me

MoHfC 0.0026 0.016 Balance

MoHfC+25W

0.044

(O36)
!0.020

_0.19)

0.0023 0.0036

1.2

(0.66)
0.9

(0.56)

4.4

(2.50)
30.4

(19.0)

Balance

0.03

(0.45)

0.4

(0.41)

MoHfC+45W 0.0096 0.0019 0.0038 0.8 49.5 Balance

(0.10) (0.56) (34.8)

WHfC 0.0009 0.0039 Balance



of thedispersoidsin the MoHfC wires was inhomogeneous, ranging from less than 0.1 to 1.0 _tm,

whereas dispersoids in the WHfC wires were finely distributed with an average size of less than

about 0.1 _tm. MoHfC+25W and MoHfC+45W wires appear to result in a finer grain width and

a more inhomogeneous spacing of the dispersoids than the MoHfC wires.

Test Procedure

Tensile and stress-rupture tests were conducted in a vacuum of 10 -5 Pa at temperatures rang-

ing from 1200 to 1600 K. Furnace test temperature was monitored with a platinum/platinum-13%

rhodium thermocouple, and controlled within +3 K during the test. The experimental details of

the tensile and stress-rupture test procedures have been given previously [3,7]. The wire was cut

to about 40 cm lengths and then suspended through a vertically mounted resistance furnace.

Tensile testing was at a constant cross-head speed and the load-time curves were recorded auto-

graphically. The proportional limit (PL), ultimate tensile strength (UTS) were determined from

the load-time curves. For the stress-rupture test, the wire was loaded with an appropriate dead-

weight, which was supported by a retractable support during specimen heating. The stress-rupture

strength (6 t) was determined from the stress versus rupture time plots. The reduction of area

(RA) of failed specimens was measured using an optical split image microscope at 150

magnification.

Stress-rupture and tensile tests were performed on wires in the as-drawn condition. In addition

tensile tests were performed on specimens electropolished [3] to produce a definite gauge section

about 25.4 mm long and 280+10 lain in diameter.

RESULTS

Tensile Stress-Strain Rate Behavior

The effect of the strain rates at 1400 and 1600 K on the PL of the as-drawn and electro-

polished wires is shown in Fig. 2. The electropolishing provided a tensile specimen with a well

defined 25.4 mm long gauge section. The PL of the electropolished wires appeared to be higher

than that of the as-drawn wires, about 650 and 480 MPa at 1400 K. The original 380 lain wire

diameter was reduced to 280 lain. The strain rates were calculated based on the assumption that

all deformation took place in the electropolished gauge section.

The decrease of the PL with decreasing strain rate was small or negligible at the high strain

rate range of 3.3×10 -4 to 3.3×10 -2 sec -1. However. it is noted that the drop of the PLs is quite

large at the slower strain rates, 3.3,, 10 -4 tO 3.3 x 10 -5 sec -l. The drop of the PI.,s at the low strain

rates is due to the onset of primary recrystaUization at 1400 to 1600 K. The difference in the

dependency of the strain rate between the MoHfC, MoHfC+25W and MoHfC+45W wires was

negligible at 1400 K. At 1600 K the PL of MoHfC+45W wires is higher than that of the MoHfC

wires over the strain rate range studied.

Stress-Rupture Properties

The stress-rupture properties of the as-drawn wires are shown in Fig. 3. Test temperature

ranged from 1200 to 1477 K and the stress-rupture time from 0.1 to about 1000 hr. The error bar



indicates a representative range of rupture time data at one stress. The 10- and 100-hr stress-

rupture strengths, ff_10 and atffil00, determined from the stress-rupture curves, are summarized

in Table II. The difference in the a t between the Mo-base alloy and the W-base alloy wires

increased with increasing rupture time and testing temperatures. At 1200 K, the at=10 (10-hr

stress-rupture strength) and the atffil00 were, respectively, 1237 and 1038 MPa for MoHfC, and

1275 and 1221 MPa for WHfC. At 1366 K, the at=100 of MoH.fC was much lower than that of
WHfC, i.e., 480 MPa versus 950 MPa.

It is noted that the difference in the a t between the simple MoHIC and the MoHfC+45W also

increased with increasing temperature and time. At 1200 K, the at=_10 of MoI-IfC was comparable

with that of MoHfC+45W (about 1237 MPa). From 1366 to 1477 K, the 100-hr stress-rulmne

strength of the MoHfC+45W wires was substantially higher than that of the MoHfC wires,

whereas the 10-hr short-term strength of the MoHfC+45 wires was slightly higher than that of

MoHfC wires. This suggests that the W containing Mo alloy wires may be a candidate composite

fiber reinforcement wires for the long-term and high temperature applications, and the simple

MoI-IfC wires may he suitable for short-term and low temperature application below 1400 K.

The relationship between the initial stress and the rupture time, tR, is shown in Fig. 4 as a

function of testing temperature for the MoHfC wires. At 1200 and 1600 K a unique slope existed

for each temperature, and the stress-rupture strength value at 1200 K was clearly higher than that

at 1600 K for all the rupture times. The slope at 1200 K was steeper than that at 1600 K. From

1366 to 1477 K, however, two slopes existed, one for rupture times above about 10 hr, and

another one for the relative short-term rupture time of less than 10 hr. The two different slopes

at 1366 and 1477 K resulted in that the long-term atffil00 of MoHfC wires at 1366 K was

considerably higher than that at 1477 K, 500 and 300 MPa, respectively. The sharp drop of the

stress rupture strength for the long-term rupture time is associated with the change in the fibrous

grain structures, such as grain broadening.

The relation between the initial stress and the rupture time of the MoI-IfC was correlated by

using the conventional power-law expression [8,9]:

tR = Air -p exp (Q/RT) (1)

where tR = rupture time Cnr), A = constant, cr = applied stress (MPa), p = stress exponent for

stress-rupture, T = testing temperature OK), R = gas constant (8.314 J/mol.K) and Q = apparent

activation energy for stress-rupture 0d/mol). The stress exponent, p, the slope of the curves in

TABLE H.--10- AND 100-HR STRESS-R_ STRENGTH OF Mo AND W BASE

ALLOY WIRES

Wire 10-Hr stress-rupture strength at K,
MPa

MoHfC

MoHfC+25W

MoHfC+45W

WHfC

1200 1366 1400 1477 1600

1237 728 564 464 a160

--- 675 --- 494 ....

1237 808 --- 615 ....

1275 1176 ...........

aExtrapolated from the measured short-term data.

bFrom Petrasek et al.'s report.

100-Hr stress-rupture strength at K,
MPa

1200 1366 1400

1038 480 350

.... 574 ---

1038 679 ---

1221 950 ---

1477 1600

310 a91

405 ---

589 ---

b780 __



Fig. 4, is high, about 14, at 1200 K over the entire test time range, and at 1366 and 1477 K for

the short-term tests. A high p value at low temperatures is indicative of a high sensitivity of the

rapture time with the applied stress, the observed stress value for ot=10 is almost equivalent to

atfl00 at 1200 K. The long-term stress-rupture data at 1366 K disphyed considerable scatter,

however, the data appeared to correlate best with a stress exponent of about 5. The apparent

activation energy, Q for the stress versus rapture-time was determined to be about 480 kJ/mol

over the stress range of 400 to 500 MPa, for temperatures of 1366 to 1477 K, and for the long-

term rapture time data of about 10 hr or larger. This value compares well with the steady-state

creep value of 470 kJ/mol determined for recrystallized TZM Mo alloy at 1573 to 1673 K [10].

DISCUSSION

Strengthening by the Dispersoid Particles

The tensile and stress-rupture properties of the HfC dispersed Mo alloy wires appear to have

comparable strengths to the WHfC wires at about 1200 K. However, for temperatures above

1200 K, the Mo-base alloy wires are weaker than the W-base alloy wires. The addition of W as

an alloying element enhances the stability of the microstructure at high temperature and yields

a higher strength MoHfC base alloy.

The short-term and/or low temperature tensile and stress-rupture strength results from the

fibrous grain structures and Hall-Perch type grain boundary strengthening. The fine fiber grain

contains more elastically stored energy [3,11], which results from the large amount of cold work-

ing employed in the wire drawing process, and contributes considerably to the wires strength. For

example, the high tensile strength of the heavily drawn Mo-33Re alloy was reported to be due

to the highly developed, fine scale, cell structures with a high background dislocation density

[12]. For the HfC dispersoids strengthened Mo alloy, the long-term and high temperature stress-

rupture and tensile strengths, however, may be the combined effects of strengthening from the

fine dispersoids, Orowan stress from the dispersoids, and/or the solid solution hardening from the

strong and hard alloying element. The fine and closely distributed H.fC dispersoids have been

shown to effectively block dislocation motion and to affect the formation of the cell and wall

structures [11].

Table Ill shows the increase in the tensile and stress-rupture strength of the hafnium carbide

dispersed wires compared to the literature values of the unalloyed wires and recrystallized W or

Mo sheets at 1366 K. The increase in the tensile strength of the hafnium carbide dispersed wires

was about fivefold and sevenfold for the stress-rupture strength in comparison to W and Mo

sheets, respectively. The increase in tensile strength due to the addition of HfC particles to Mo

or W and the cold work was about 650 MPa, which is somewhat higher than earlier estimates:

Previous work indicated about a 120 MPa increase for the 200 pm WHfC wires with a 1.55 vol%

fraction of HfC [3].

Prope Comparisons

The stress-rupture data for the wires indicated that in the higher temperature range the WHfC

wires have a higher strength than the MoHfC wires and that the W addition to the MoHfC is an

effective strengthener. The density compensated specific strength values, stress/density, i.e.,
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TABLE IH._THE INCREASE IN THE TENSILE AND STRESS-

RUPTURE STRENGTH OF THE HfC PARTICLE DISPERSED

MoHt'C AND WHfC WIRES IN COMPARISON TO THE

UNALI.,OYF__,D MOLY AND TUNGSTEN

WIRES AT 1366 K

Material

MoHfC

Mo

Mo

WHIC

W

W

Condition

Wire (380 pm)

Wire (380 pm)

Sheet

(recrystallized)

Wire (380 ttm)

Wire (380 ttm)

Sheet

(recrystallized

Particle Units, lO0-I-Ir stress-

size, MPa rupture strength,
nm MPa

150 970 480

-__ a320 b80

--- b172 b57

35 1340

---- a650

___ b241

aUnpubllshed work by H.M. Yun.

bFq'om reference [5].

950

a460
b145

Young's

modulus,

GPa

b220

b365

MPa/(g/cm 3) or m, are an important criteria in choosing a candidate wire for fiber composite

reinforcement. Figure 5 shows the comparison of the density compensated stress-rapture strength

of the MoHfC, MoHfC+25W, MoHfC+45W and WHIC wires, including the 218, ST300, and

W4ReHfC [13]. It is noted that the specific rupture strength of Mo-base wires is almost

equivalent to that of the WHfC wires The 100-hr specific rapture strength of the Mo-base alloy

wires appeared to be lower at 1366 K than that of the W4ReHfC wires.

The present HtC dispersed Mo-base wires (MoHIC, MoHfC+25W and MoHfC+45W) also

have a higher 100-hr specific rapture strength than the lamp grade 218 W orthe thoria dispersed

ST300 wire at 1366 or 1477 K. These results indicate that the MoHfC wire reinforced compos-

ites, such as Nb ahoy matrix composites, may have a greater stress-rapture strength than similar
composites reinforced with the 218 or ST300 W wire [I].

S_Y

Tensile and stress-rupture behavior of molybdenum (Mo) and tungsten (W) alloy wires,

380 pm diameter, have been studied in the temperature range of 1200 to 1600 K, and the results
are summarized below:

(1) Long-term stress-rupture strength of the MoHfC wires was improved by W addition.

(2) The tensile strength of the MoHfC wires increased with increasing strain rates, and the

swain rate dependency increased with increasing temperatures.

CONCLUSION

The hafnium carbide dispersed Mo-base alloy wires have a higher stress-rupture strength than

the commercially available W-base alloy wires. The density compensated specific strengths of

MoHfC wires is comparable to those of the strongest experimental W-base alloy wires. These

6



Mo-basealloy wires,therefore,appearto be an attractive alternative candidate for metal matrix

composite fiber reinforcements.
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10 gm
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Figure 1.--As-drawn microstructures (SEM secondary electron images) of Mo
and W base alloy wires.
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Figure 2.--Effect of the strain rate on the tensile strength of Mo-base alloy wire
at 1400 and 1600 K.

900

800

700

600

500
:E

400

2O00

1000

¢= 800
._ 700

600

500

400

300

-- _ ,_- WHfC
_ MoH fC + 45W-_,,

_ / \ _.
MoHfC + 25W -_ ._

/\
MoHfC -_ \

\

m

-- [-WHfC

- MoHfC--" ...'"
_ _ _ _ ii Ir

MoHfC + 45W-<,

,__oHfC + 25W

_ MoHfC --_

MoHfC + 25W

200 I Ilvhhl I vllhhl I vllldd I vlnld, I I nllllhl I nlnlllll I,I,hlnl I vlvhl,!
0.1 1 10 100 1000 0.1 1 10 100 1000

Rupture time, hr

Figure 3._Stress-rupture behavior of Mo- and W-base alloy wire at 1200, 1366 and 1477 K.
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